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ABSTRACT

MnOx, Ag/MnOx, Au/MnOx, Cu/MnOx, Pd/MnOx, Pt/MnOx, Ru/MnOx, Au/CeO x and

Au/Fe203 were synthesized and tested for CO oxidation activity in low concen-

trations of stoichiometric CO and 0 2 at 30-75°C. Catalytic activity was

measured for periods as long as 18000 minutes. At 75 ° Au/MnO x is most active
sustaining nearly 100% CO conversion for 10000 minutes. It also retains high

activity at 50 and 30°C with negligible decay in activity. A direct compari-

son between an unpretreated 10% Au/MnO x catalyst and an optimized 19.5%

Pt/SnO 2 (pretreated) catalyst shows that the Au/MnO x catalyst exhibits much
higher catalytic activity and far superior decay characteristics. Other

catalysts including Au/CeO x and Au/Fe203 also perform well. The Cu/MnO x
exhibits a high initial activity which decays rapidly. After the decay period

the activity remains very stable making Cu/MnO x a potential candidate for

long-term applications such as CO 2 lasers in space.

INTRODUCTION

The catalytic oxidation of carbon monoxide near ambient temperatures has

important applications. Closed-cycle CO 2 lasers produce CO and 02 in the

laser discharge resulting in a rapid loss of output power. This problem can

be overcome by incorporating a low-temperature CO oxidation catalyst into the

laser system which converts the dissociated products back into CO 2 (I-3).

Also, air filtration devices often contain catalysts to oxidize dangerous

levels of toxic CO. Such devices are utilized in fire safety equipment and in

underground mines as respiratory aids.

Consequently, the development of low-temperature CO oxidation catalysts

has received considerable attention (I-19). Although significant progress has

been made with regard to understanding the reaction mechanism (6,7,10,13),

there remains a need for development of catalysts which exhibit higher activi-

ties for prolonged periods at low temperatures (typically less than I00°C) and

in the diverse range of oxidation environments which are encountered. Factors

which determine oxygen availability and gaseous impurities often have a pro-

nounced effect on catalyst performance. CO oxidation in ambient air has the

advantages of excess 02 and low CO 2 concentrations which facilitate the reac-
tion considerably. Consequently, numerous materials are known to oxidize CO

in excess 02 at low temperatures (4,5,14-17), but complications due to pre-
sence of humidity and/or air pollutants are often detrimental to their acti-

vity. In CO 2 lasers, CO and 02 are present in small stoichiometric quantities

in a large amount of CO 2. Although the catalytic reaction benefits from the
fact that the lasers usually operate at temperatures somewhat above ambient

(25-I00°C), catalytic CO oxidation is difficult under these conditions.
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Recently, Haruta and coworkers prepared supported-gold catalysts on

various base-metal oxides including MnO x, Fe203, C0304, Ni0 and CuO and deter-
mined their catalytic activities toward the oxidation of H2 and/or CO

(18,19). Most of the CO oxidation runs were carried out using I volume % CO

in dry air. At 0°C Au/Fe203 and Au/NiO maintain essentially 100% CO conver-
sion under the flow conditions used over a 7-day test period. Similar per-

formance was also observed for Au/Fe203 and Au/C0304 at 30°C in 76% relative

humidity. Therefore, these catalysts appear to be quite useful in air purifi-

cation devices, but activities in the presence of air contaminants were not

determined. These catalysts may be useful in CO 2 lasers even though the

reaction conditions are quite different as described above. It is interesting

to note that Haruta and coworkers apparently did not examine the behavior of

Au/Mn0 x toward CO oxidation.

Catalysts consisting of Pt and/or Pd supported on tin oxide have been

researched extensively for use in CO 2 lasers (I-13). Although these materials
can exhibit considerable CO oxidation activity in this application, there are

complications which must be overcome. Acceptable activity is observed only

after the catalyst undergoes a reductive pretreatment. Unfortunately, such

pretreatments often lead to considerable induction periods often lasting

several days during which the observed activity declines before reaching a

maximum (7). Even after acceptable activity is recovered these materials

exhibit a steady decay in performance over time. Efforts to understand and

correct these problems continue (6-10).

The purpose of the present study is to explore the behavior of materials

other than platinized tin oxide as catalysts for low-temperature CO oxidation

particularly with regard to CO 2 laser applications. Several materials were

synthesized and screened for CO oxidation activity using small concentrations

of stoichiometric CO and 02 in He and temperatures between 30 and 75°C. The

tests were run for periods as long as 18000 minutes in order to observe the

induction and decay characteristics of the catalysts.

CATALYSTS PREPARATION

A review of the literature provided a basis for selection of support

materials examined in this study which include iron oxide (Fe203), nonstoichi-

ometric manganese oxides (MnO×), and ceria (CeO x) where x is between 1.5 and

2. The materials investigated were synthesized using established impregnation

and coprecipitation techniques (20). The samples prepared include MnO x,

Pt/MnOx, Ag/MnOx, Pd/MnOx, CuO/MnOx, Au/MnOx, Au/CeO x and Au/Fe203.

The MnO x was used as received from the Kerr-McGee Company, U.S.A. It was

prepared by the electrolytic oxidation of manganous sulfate and has a B.E.T.

surface area of 74 mZ/g. The MnO x served as a sample itself as well as an

impregnation support for other materials.

Two Pt/MnO x samples (0.2 wt% Pt) were prepared by impregnation of MnO x

using an aqueous solution of Na2Pt(OH) 6. Sample #I was dried in air at 280°C

for 4.5 hours while sample #2 was dried in air at 75°C for 3 hours. Pd/MnO x

(0.2 wt% Pd) was prepared by impregnating MnO x with an aqueous solution of

PdCI 2. The product was dried in air at 280°C for 4.5 hours.
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A sample which contained admixtures of CuO and MnO x was prepared from the

products of several procedures. Procedure A involved coprecipitation from

aqueous solutions of CuSO 4 + sucrose and KMn04. The precipitate was washed

with water and dried in air at I05°C for 15 hours. The Cu:Mn molar ratio was

approximately 1.4. In procedure B the former product was dried in air at

280°C for 2 hours. In procedure C MnO x was precipitated from aqueous solu-

tions of sucrose and KMnO 4. The precipitate was washed and dried as outlined

in procedure A. The final product consisted of an admixture of 0.4 grams from

procedure A, 0.7 grams from procedure B, 0.3 grams from procedure C and 0.2

grams of commercial CuO powder.

A technique in which Mn(OH) 2 was precipitated in the presence of ultra-

fine Ru powder was utilized to prepare a 2 wt% Ru/MnO x sample. A solution of

Mn(N03) 2 was added dropwise to a stirred mixture of Ru powder in NH4OH. The
resulting product was dried and calcined at 400°C for 2 hours.

Four supported Au samples were synthesized via coprecipitation from

aqueous HAuC14 and the nitrate of the corresponding support metal. The compo-
sition of the materials _s approximately 5 at% Au/MnO x, 10 at% Au/MnO x, 20 at%

Au/CeO x and 5 at% Au/Fe203 on a Au/metal basis. In each case the appropriate
precursor solutions were added dropwise to a stirred solution of sodium car-

bonate at room temperature. After washing and drying the precipitates were

calcined in air at 400°C for 4 hours. Two Au/Fe203 samples were prepared

which differed only in the temperature of the wash water utilized (25°C and

80°C).

EXPERIMENTAL

The reactor used to test the CO oxidation activity of the catalysts has

been described previously (11). Screening of catalysts for CO oxidation has

typically been carried out using a test gas consisting of a few percent CO in

air (excess oxygen), but the catalytic behavior under stoichiometric CO and 02

and in the presence of CO 2 has not been determined. Since the catalytic

behavior can vary considerably under different environments as described

above, it is necessary to perform such experiments. Except for the data shown

in figure 9, all tests were conducted using 0.15 grams of catalyst and a

reaction gas mixture of I% CO, 0.5% 02 and 2% Ne in helium at a pressure of I

atm. flowing at 10 sccm. The reaction temperatures investigated were 75, 50

and 30°C as noted. The conversions are quite high under these conditions

which correspond to operating the reactor in an integral mode.

In most cases the catalysts were tested as prepared without additional

pretreatments. Unless noted otherwise, each catalyst was loaded in the reac-

tor and exposed to flowing helium for about one hour as the reaction tem-

perature stabilized. Then the helium flow was changed to the reaction gas

mixture and product sampling was begun. At predetermined time intervals, an

automated sampling valve directed a small fraction of the reaction products to

a gas chromatograph for analysis of %C02 yield, %C0 loss and %02 loss, and the

results were plotted versus time.

RESULTS AND DISCUSSION

During these initial activity screening experiments, emphasis is placed

upon characteristics of the overall CO oxidation activity curves with respect
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to temperature and time. An appropriate catalyst for use in CO 2 lasers must

not only exhibit high activity at low temperatures (25-I00°C) but also main-

tain acceptable activity over a lifetime of up to 3 years. Since a catalyst

cannot be practically tested for a 3-year lifetime, its activity profile must

be extrapolated with reasonable confidence. Nevertheless, it is necessary to

exercise caution when evaluating potential catalysts for CO 2 lasers because a

catalyst which exhibits the best activity initially might succumb to decay

mechanisms which render it inferior after extended use. Consequently, a

catalyst exhibiting only marginal activity intially may become the optimal

choice if the corresponding activity decay remains negligible.

CO oxidation activity curves for several MnOx-based catalysts appear in

figure I. Initially, MnO x and Cu/MnO x exhibit the highest CO oxidation acti-

vities although their performance rapidly deteriorates. However, after about

2000 fninutes the reaction curve for Cu/MnO x appears to approach a steady-state

conversion with negligible activity decay. MnO x may approach a more active

steady-state conversion but more extensive testing is required to be cer-

tain. Even though the Pt/MnO x #I and Ag/MnO x samples display superior acti-

vity throughout most of the test period, extrapolation of the data in figure I

indicate that Cu/MnO x may be the optimal catalyst in a long-term run.

Figure I also depicts an interesting comparison between the catalytic

activities of Pt/MnO x #I (dried for 4.5 hours at 280°C) and Pt/MnO x #2 (dried

for 3 hours at 75°C). The poor activity exhibited by Pt/MnO x #2 may be the
result of incomplete removal of surface impurities (such as Na, CI or OH)

associated with the impregnation step. However, as found in previous studies

of MnO 2 and MnO2-CuO catalysts (21-23), the inactivity is most likely the

result of incomplete surface activation. MnOx-based catalysts usually require

heating between I00-200°C in air or oxygen to produce an active surface. The

heat treatments apparently activate the surface through the creation of reac-

tive sites via partial surface reduction depletion of adsorbed water or sur-

face hydroxyl groups, and/or concurrent micropore generation.

An interesting observation is that the reaction profiles of Pt/MnO x #I

and Ag/MnO x are remarkably similar. This is unexpected based on the different

catalytic properties of Pt and Ag. It is possible that this behavior results

primarily from exposure of MnO x to similar basic solutions followed by drying

in air at 280°C for 4.5 hours. The activity curve for pure MnO x (as-received

and common to both samples) is quite different in character, which is consist-

ent with this hypothesis. Nevertheless, both materials performed well during

the 10000-minute test period oxidizing 70-80% of available CO at 75°C.

As mentioned above Pt/SnO 2 catalysts have received considerable attention

for use in CO 2 lasers. Figure 2 shows a comparison of CO oxidation perfor-

mance between the Pt/MnO x #I sample (see figure I) and a commercial Pt/SnO 2

catalyst manufactured by Engelhard Industries. At 75°C the Pt/MnO x #I sample
exhibits superior activity after approximately 2500 minutes of reaction. Due

to the limited reaction data for Pt/Sn02, further comparisons require data

extrapolation. Pt/MnO x #I represents the optimal catalyst over an extended
time period assuming that the indicated trends continue. This also is true

for Ag/MnO x which behaves identically to Pt/MnO x #I.

Figure 2 represents a valid comparison because the sample size and exper-

imental parameters used were identical in both tests. It should be noted,
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however, that the Pt/SnO 2 was pretreated in a 5% CO/He stream at 225°C for I

hour prior to activity testing. Such reductive pretreatments significantly

enhance the performance of Pt/SnO 2 catalysts (7). A surface characterization

study of the changes induced during pretreatment of the Engelhard catalyst has

been carried out by Drawdy et al. (10). The fact that no pretreatments were

used for the MnOx-based catalysts is an advantage. Furthermore, since the

precious metal loading for the Pt/MnO x #I and Ag/MnO x samples is only 0.2 wt%

(compared with 2 wt% for the Pt/SnO 2 catalyst), there also appears to be an

economic advantage over the Engelhard catalyst. Of course, the Ag/MnO x cata-

lyst is the least costly.

The fact that reductive pretreatments activate Pt/SnO 2 catalysts provided

motivation to investigate the effects of similar pretreatments on Pt/MnO x

catalysts. Two pretreatment conditions were used in which the Pt/MnO x #I

sample was exposed to 5% CO/He for I hour at 125 and 225°C. The effects on

catalytic performance are shown in figure 3. It is clear that the pretreat-

ments are detrimental to the CO oxidation activity of Pt/MnO x. In fact, the

observed activity of Pt/MnO x decreases with increasing pretreatment tempera-

ture; a trend opposite to that which is observed for Pt/SnO 2 catalysts (7). A

possible explanation may involve the reducibility of the MnO x and SnO 2 sup-

ports. It appears that catalysts based upon these materials require a certain

degree of surface reduction for optimal activity. There is evidence that a

completely dehydroxylated or an entirely oxygenated MnO x surface is not active

toward low-temperature CO oxidation (21,22). Similarly, surface hydroxyl

groups are believed to be instrumental in the CO oxidation mechanism over

Pt/SnO 2 (7-10). Given the relative instability of MnO x with respect to SnO 2,

such an optimum degree of surface reduction most likely results from milder

pretreatments than those used to generate the data shown in figure 3. In

fact, heat treatments in air or oxygen appear to be more beneficial for MnO x

CO oxidation catalysts (21,22,24-26). Although the CO reductive pretreatments

at 125 and 225°C are appropriate for Pt/SnO2, they apparently are too severe

for Pt/MnO x.

Additional insight on the pretreatment effects may be gained by consider-

ing the initial reaction characteristics with regard to CO 2 production, CO

loss and 02 loss (determined by GC analysis). These data are shown in figures

4, 5 and 6 for Pt/MnO x catalysts which were not pretreated, pretreated at

125°C and pretreated at 255°C respectively. For unpretreated Pt/MnO x #I,

figure 4 shows that a considerable amount of catalyst surface oxygen is uti-

lized in CO 2 formation during the early stages of reaction because the 02 loss

is much lower than the CO 2 production. The participation of catalyst oxygen

during CO oxidation has been observed for MnO x catalysts previously (14,25-

27). After a 125°C CO pretreatment, the catalyst activity is decreased, and

this decrease is accompanied by a decrease in the utilization of catalyst

oxygen as shown in figure 5. Since the curves now nearly coincide, the early

stages of CO oxidation on this pretreated surface appears catalytic in nature

with only gas-phase oxygen being utilized. The data of figure 6 obtained

after pretreating in CO at 225°C indicate essentially opposite behavior to

that shown in figure 4. That is, the surface appears to have been reduced to

a point where gas-phase oxygen is utilized not only in CO 2 formation but in

catalyst regeneration as well. Even though the catalyst surface acquires

excess oxygen from the gas phase, this fresh surface oxygen does not appear to

participate in the reaction or restore the catalytic activity which was lost

during the pretreatment.
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A consistent interpretation of the data in figures 4-6 may be realized by

invoking a surface REDOX mechanism for CO oxidation. The active surface in

figure 4 appears to reach a situation wherein both surface and gas-phase

oxygen participate in the reaction. The active surface is partially reduced

after the first 30 minutes of reaction, and the extent of reduction depends

upon the relative rates of surface reduction by CO and reoxidation by gas-

phase 02 . During the CO pretreatments, the surface can be reduced to such an
extent that catalyst oxygen is not available for reaction. Therefore, the

resulting surfaces are not as active toward CO oxidation. These data suggest

that it might be possible to determine optimal pretreatment conditions and

that these optimal conditions would be less severe than the ones used in this

study. The exact form(s) of the active surface oxygen species remains to be

determined.

Figure 7 shows the CO oxidation performance of Au/CeOx, Au/Fe20 _ #I and

Au/Fe203 #2 at 75, 50 and 30°C. Several important features appear in these
activity curves. The Au/CeO x exhibits very high activity at 75°C oxidizing

greater than 80% of the available CO. Also, the reaction profile exhibits

negligible decay over 10000 minutes. This represents a significant improve-

ment over the performance of Pt/MnO x #I and Ag/MnO x shown in figure I. At

50oC Au/CeO X continues to perform well maintaining a 43% CO 2 yield.

Figure 7 also provides an interesting comparison between Au/Fe203 #I

(washed with hot water) and Au/Fe203. #2 (washed with cold water). The acti-

vity of Au/Fe203 #I is clearly superlor although some decay in performance is
evident. Surface CI is generally believed to inhibit low-temperature CO

oxidation. Therefore, the difference in activity of the two samples may be

attributable to poisoning by surface chlorine (originating from the gold pre-

cursor HAuC14) which is not as effectively removed by washing with cold water

compared to hot water. Nevertheless, it is interesting to note that the

activity of Au/Fe203 #2 steadily increases with time (negative or inverse
decay). This behavior may be a consequence of some surface process which

removes the surface CI as the reaction proceeds.

It is interesting to compare the performance of Au/Fe20 3 #2 with that of

a Au/Fe20 _ catalyst investigated by Haruta et al. (18,19). They observed that

Au/Fe20 3 is essentially 100% efficient in oxidizing I% CO in air even below
0°C. The lower activities found in this study apparently are due to the diffi-

culties involved in oxidizing CO in a stoichiometric mixture as described

above.

CO oxidation activity curves for a second set of MnOx-based materials

appear in figure 8. The data indicate that Au/MnO x is clearly the most active

catalyst examined in this study. At 75°C, Au/MnO x sustains nearly 100% CO 2

yield over a 10000 minute period, and excellent activity is also observed at

50 and 30°C. At all temperatures the activity profiles are exceptional in

that they exhibit negligible decay over the entire test period.

Figure 8 also shows the activity curves for two Ag/MnO x samples (0.2 wt%

and 1.0 wt% Ag). As stated above, the two samples were prepared in a similar

manner differing only in Ag content. The data indicate that small Ag loadings

result in better catalytic behavior. Both reaction profiles are similar up to

1000 minutes of reaction after which the I wt% Ag/MnO x sample exhibits accel-

erated decay in activity.
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Although Pd/MnO x and Ru/MnO x are the least active catalysts according to
the data in figure 8, significant conversions are nevertheless observed.

However, both these two materials and the others used in this study probably

would be improved by optimizing preparation and pretreatment techniques. Such

optimization studies will be carried out for the more promising catalysts

particularly Au/MnO x.

Most of the effort related to developing a low-temperature CO oxidation

catalyst thus far has been expended on platinized tin oxide systems. There-

fore, it is important to compare the behavior of the Au/MnO x and Pt/SnO_

catalysts. This comparison is shown in figure 9 for an optimized 19.5%

Pt/SnO 2 catalyst and a 10% Au/MnO x catalyst using 0.1 g of each and a flow

rate of 10 sccm at about 50°C. The Pt/SnO 2 catalyst was optimally pretreated,

and the Au/MnO x catalyst was not pretreated. The optimized Pt/SnO 2 catalyst

is nearly twice as active as the Engelhard Pt/SnO 2 catalyst. As observed in

figure 9, the activity of the Pt/SnO 2 catalyst is high initially but rapidly

drops to about 42% and then continues to decline slowly. Outgassing results

in the catalyst regaining its initial high activity followed by a rapid loss

in activity to value of about 35% with continuing decline in activity. The

activity of the Au/MnO x catalyst is initially about 78%. It rises rapidly to
almost 90% and then remains constant over the duration of the test. Out-

gassing has little effect on the activity of the Au/MnO x catalyst. This

direct comparison demonstrates that the Au/MnO X catalyst is vastly superior to

the optimized Pt/SnO 2 catalyst with respect to both catalytic activity and

decay characteristics. Furthermore,the Au/MnO x catalyst is much less costly

than the Pt/SnO 2 catalyst because about half the amount of Au is required per

unit weight of catalyst, Au costs about three-fourths as much as Pt, and the

activity of Au/MnO x is more than twice that of Pt/SnO 2 so less than half the

total weight of the Au/MnO x catalyst would be required for a given applica-

tion. The fact that no pretreatment is required for the Au/MnO x catalyst is

also a significant advantage with regard to laser applications. Taking all of

these considerations into account, there is no justification for further

development of platinized tin oxide systems for low-temperature CO oxidation

applications. Efforts are continuing by Hoflund, Gardner, Schryer and Up-

church to support the Au/MnO x catalysts on monolith supports, test these

monolith supported catalysts, and characterize the Au/MnO x catalysts.

SUMMARY

Selected materials have been prepared and tested as low-temperature CO

oxidation catalysts for long-term use in CO 2 lasers. The materials were

prepared utilizing impregnation and coprecipitation techniques and include

MnOx ' Pt/MnOx, Ag/MnOx, Pd/MnOx, Cu/MnOx, Ru/MnOx, Au/MnOx, Au/CeO x and

Au/Fe203. Each was tested for CO oxidation activity in low concentrations of

stoichiometric CO and 02 at temperatures between 30 and 75°C. Although most
of the materials exhibit significant CO oxidation activity, Au/MnO x is excep-

tionally active. At 75°C, Au/MnO x sustains nearly 100% CO 2 yield for 10000

minutes with no evidence of activity decay under the test conditions used.

Exceptional activities are also observed at 50 and 30°C. Many of the cata-

lysts tested perform better than a platinized tin oxide catalyst either with

regard to activity, decay characteristics or both. For example, Cu/MnO x has a

lower activity than several of the catalysts tested, but it shows negligible

decay making it a potential candidate for long-term performance. Pt/MnO x #I

and Ag/MnO x exhibit similar and higher activities but decay more rapidly than
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Cu/MnO x and less rapidly than the commercially available platinized tin

oxide. Pretreatment in CO at 125 and 225°C decreases the activity. Optimiza-

tion studies of preparative and pretreatment variables need to be performed in

order to further increase the performance of low-temperature CO oxidation

catalysts.

A direct comparison between the catalytic behavior of a Au/MnO x catalyst

and an optimized Pt/SnO 2 catalyst has been carried out. The performance of

the Au/MnO x catalyst is vastly superior to that of the Pt/SnO 2 catalyst with
regard to both activity and decay characteristics. Combined with the facts

that the Au/MnO x catalyst requires no pretreatment and is less costly than

Pt/SnO 2 catalysts, it appears that the Au/MnO x catalyst is the appropriate

choice for CO 2 laser applications.
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